Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses TUD Department of Chemistry Fall 2017 Page 1 of 6

1. a) A piece of metal alloy with a mass of 5.0 g is heated to 95° C and then dumped into 45 g of water(CH₂O=4.184 J/g°C. The water temperature increases from 21°C to 26°C. What is the specific heat of

Emperature increases from the metal? Cal = MCsT = 45g (4.184 / goc) (26-21°C) = 941 J

b) How many Joules of heat would be required to increase the temperature of a human body by 1.0 °C? (That's to go from about 98.6 °F to a fever of 100.4 °F). Assume the specific heat of the body is 3.5 J/g°C and an FAA standard man- 70 Kg or 70,000 g.

8 = MCaT = 70,000g(3.55c)(38-245,000) = 245,000

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses

TUD Department of Chemistry Fall 2017 Page 2 of 6

Draw the Lewis structure for phosphite, PO₃³⁻ and for methyl formate, 2. a) $\mathsf{C}_2\mathsf{H}_4\mathsf{O}_2$. (Hint: The skeletal structure for methyl formate is on the board.). Show the formal charges on all atoms. (Hint: Skeletal structure

for formic acid is on the board)

b) Circle the polar molecules (Hint: the geometry is accurately portrayed in the drawings):

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses TUD Department of Chemistry Fall 2017 Page 3 of 6

3. a) A gas at 255 K occupies 4.0 L at a pressure of 1.1 atm. What volume does it occupy if the pressures is changed (T constant) to 0.050 atm?

b) A gas at 273 K and 1.0 atm occupies 7.0 L . What is its pressure if the temperature is changed to 373 K and the volume is decreased to 1.0 L?

$$P_{N} = 1.0 \text{ ATM} \left(\frac{3?3 \text{ K}}{2?3 \text{ K}} \right) \left(\frac{7.0 \text{ L}}{1.0 \text{ L}} \right)$$

$$= 9.6 \text{ ATM}$$

c) What is the density of CO_2 at 315 K and 750 Torr?

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses TUD Department of Chemistry Fall 2017 Page 4 of 6

4) a) Circle the strong acids

b) Circle the water soluble compounds

c) A 25.00 mL sample of aqueous HBr was titrated with 0.1500 M NaOH. 45.55 mL of the base was required to reach the equivalence point. What was the molar concentration of the acid?

$$(HBr) = \frac{mmol H+}{mLsolin} = \frac{6.832 mmol}{25.00 mL}$$

= 0,2733 M

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses

TUD Department of Chemistry Fall 2017 Page 5 of 6

 ΔH for an endothermic process is A) zero, positive B) positive, negative C) negative, positive 		•		
				•
() negative positive				
D) positive, zero				
E) zero, negative				(
2) The reaction				2)
$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$	$\Delta H^{\circ} = -3351 \text{ k}$	J		
is, and therefore heat is	by the rea	action.		
A) endothermic, absorbed	-			
B) endothermic, released				
C) exothermic, absorbed				
D) exothermic, releasedE) thermoneutral, neither released no	or absorbed			
L) thermoneutral, hertiter released no	n absorbed			
3) In which of the molecules below is the ca	rbon-carbon dis	tance the shortest?		3)
A) H ₃ C-CH ₂ -CH ₃				
B) $H_2C=CH_2$				
C) $H_2C=C=CH_2$				
D) H ₃ C-CH ₃				
E) H-C≡C-H				
4) Of the atoms below, is the mo	ost electronegati	ve.		4)
A) Si B) Cl	C) S	D) Rb	E) Ca	
			_	_,
5) A valid Lewis structure of can A) SO ₂ B) SiF ₄	nnot be drawn v C) NI ₃	vithout violating the D) ICl5	ectet rule. E) CO ₂	5) .
A) 30-2 b) 311-4	C) N13	D) IC15	E) CO ₂	
6) The basis of the VSEPR model of molecul	lar honding is			6)
A) electron domains in the valence sh			es so as to	· .
minimize repulsions				
B) atomic orbitals of the bonding ator	ms must overlap	for a bond to form		
C) hybrid orbitals will form as necess			spherical	
symmetry		.1 1		
D) regions of electron density on an a s-character	tom will organiz	ze tnemselves so as to	o maximize	

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses

TUD Department of Chemistry Fall 2017 Page 6 of 6

7) The net ionic equation for the reaction between aqueous nitric acid and aqueous sodium hydroxide is A) HNO ₃ (aq) +OH⁻ (aq) → NO ₃ ⁻ (aq) +H ₂ O (l)						
		ag)				
B) $H^{+}(aq) + Na^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(1) + Na^{+}(aq)$						
C) $H^{+}(aq) + HNO_{3}(aq) + 2OH^{-}(aq) \rightarrow 2H_{2}O(l) + NO_{3}^{-}(aq)$						
D) $H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$						
E) HNO_3 (aq) + $NaOH$ (aq) \rightarrow $NaNO_3$ (aq) + H_2O (l)						
8) The molecular geometry of the right-most carbon in the molecule below is						
н о						
H O H-C-C-O-H H						
Н						
A) tetrahedral						
B) trigonal bipyramidal						
C) T-shaped						
D) trigonal planar						
E) octahedral						
9) Of the molecules below, only	is nonpolar.			9)		
A) NH_3 B) TeV	Cl ₂ C) H ₂ O	D) CO ₂	E) HCl			
10) Molecular compounds of low molecular weight tend to be gases at room temperature. Which of						
the following is most likely no	ot a gas at room temperatu	re?				
A) CH ₄ B) Cl ₂	C) HCl	D) LiCl	E) H ₂	1		
				15		
11) A 0.100 M solution of will contain the highest concentration of potassium ions.						
A) potassium oxide				, <u> </u>		
B) potassium phosphate						
C) potassium hydrogen ca	nrbonate					

D) potassium iodide