Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses TUD Department of Chemistry Fall 2017 Page 1 of 6

1. a) A piece of metal alloy with a mass of 5.0 g is heated to 95° C and then dumped into 45 g of water($CH_2O=4.184$ J/g°C. The water temperature increases from 21° C to 26° C. What is the specific heat of the metal?

b) How many Joules of heat would be required to increase the temperature of a human body by 1.0 $^{\circ}$ C? (That's to go from about 98.6 $^{\circ}$ F to a fever of 100.4 $^{\circ}$ F). Assume the specific heat of the body is 3.5 J/g $^{\circ}$ C and an FAA standard man – 70 Kg or 70,000 g.

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses TUD Department of Chemistry Fall 2017 Page 2 of 6

2. a) Draw the Lewis structure for phosphite, PO_3^{3-} and for methyl formate, $C_2H_4O_2$. (Hint: The skeletal structure for methyl formate is on the board.). Show the formal charges on all atoms. (Hint: Skeletal structure for formic acid is on the board)

b) Circle the polar molecules (Hint: the geometry is accurately portrayed in the drawings):

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses TUD Department of Chemistry Fall 2017 Page 3 of 6

3. a) A gas at 255 K occupies 4.0 L at a pressure of 1.1 atm. What volume does it occupy if the pressures is changed (T constant) to 0.050 atm?

b) A gas at 273 K and 1.0 atm occupies 7.0 L. What is its pressure if the temperature is changed to 373 K and the volume is decreased to 1.0 L?

c) What is the density of CO_2 at 315 K and 750 Torr?

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses TUD Department of Chemistry Fall 2017 Page 4 of 6

4) a) Circle the strong acids

HClO₄ KCl HNO₂ HNO₃ H₂SO₃ H₃PO₄

b) Circle the water soluble compounds

NaCl $AgC_2H_3O_2$ KBr $(NH_4)_3PO_4$ Li_2SO_4 $CsCO_3$ $HgCl_2$

c) A 25.00 mL sample of aqueous HBr was titrated with 0.1500 M NaOH. 45.55 mL of the base was required to reach the equivalence point. What was the molar concentration of the acid?

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses

TUD Department of Chemistry Fall 2017 Page 5 of 6

1) ΔH for an endothermic process	is while ΔH for	or an exothermic pro	cess is	. 1)	
A) zero, positive					
B) positive, negative					
C) negative, positive					
D) positive, zeroE) zero, negative					
L) Zero, negative					
2) The reaction					
$4Al(s) + 3O_2(g) \rightarrow 2Al_2$	$_{2}O_{3}$ (s) $\Delta H^{\circ} = -3351 \text{ k}$	J			
is, and therefore hea	at is by the rea	action.			
A) endothermic, absorbed					
B) endothermic, released					
C) exothermic, absorbed D) exothermic, released					
E) thermoneutral, neither re	eleased nor absorbed				
3) In which of the molecules below	v is the carbon-carbon dis	stance the shortest?		3)	
A) H ₃ C-CH ₂ -CH ₃					
B) H ₂ C=CH ₂					
C) $H_2C=C=CH_2$					
D) H ₃ C-CH ₃					
E) H-C≡C-H					
1) Of the atoms below,	is the most electronegative	ve.		4)	
A) Si B) Cl	C) S	D) Rb	E) Ca		
5) A valid Lewis structure of cannot be drawn without violating the octet rule.					
A) SO_2 B) $\overline{SiF_4}$		D) ICl ₅	E) CO ₂		
6) The basis of the VSEPR model o	of molecular bonding is _	·		6)	
	alence shell of an atom w	ill arrange themselve	es so as to		
A) electron domains in the v					
minimize repulsions					
minimize repulsions B) atomic orbitals of the bor			1		
minimize repulsions			spherical		

maximize overlap

Exam 1

1-4 30 points each Multiple choice 10 points each with 3 free misses

TUD Department of Chemistry Fall 2017 Page 6 of 6

7) The net ionic equation for the reaction between aqueous nitric acid and aqueous sodium						
hydroxide is A) HNO 3 (aq)	 +OH⁻ (aq) → NO ₃ :	(aq) + H ₂ O (l)				
		→ H ₂ O (l) + Na ⁺ (aq)			
C) H ⁺ (aq) + HN	NO ₃ (aq) + 2OH ($(aq) \rightarrow 2H_2O(l) + 1$	NO3 ⁻ (aq)			
_	$H^-(aq) \rightarrow H_2O(1)$	2				
•	· -	NO ₃ (aq) + H ₂ O (l)				
8) The molecular geometry of the right-most carbon in the molecule below is						
H 0 H-C-C-(H A) tetrahedral B) trigonal bipy C) T-shaped D) trigonal plan E) octahedral	ramidal					
9) Of the molecules be A) NH ₃	elow, only B) TeCl ₂		D) CO ₂	E) HCl	9)	
10) Molecular compounds of low molecular weight tend to be gases at room temperature. Which of the following is most likely not a gas at room temperature?						
A) CH ₄	B) Cl ₂	C) HCl	D) LiCl	E) H ₂		
11) A 0.100 M solution of will contain the highest concentration of potassium ions. A) potassium oxide B) potassium phosphate C) potassium hydrogen carbonate D) potassium iodide E) potassium hypochlorite						